
Supporting Collaboration in Software Development with Discrete Event Streams

Jeremy Handcock and Gregory V. Wilson
University of Toronto

Department of Computer Science
10 King’s College Road, Toronto, Ontario, M5S 3G4, Canada

jeremy@aperte.org, gvwilson@cs.toronto.edu

Abstract

Awareness of group activities and of changes to artifacts
in a shared workspace is known to be a key component in
successful collaboration. We implemented a tool called Au-
fait that aggregates and displays streams of discrete artifact
modifications—or events—that occur in a shared software
development workspace. In a three-week empirical study at
two different organizations, we found that developers used
event streams in Aufait to support well-established mechan-
ics of collaboration. We also found that developers viewed
different types of event streams disproportionately and that
they were primarily interested in very recent events. Our re-
sults demonstrate that discrete event streams are a promis-
ing way to support collaboration in software development,
and furthermore, our results pose important implications
for the design of future tools.

1. Introduction

In software teams, developers maintain awareness of
peer activities and discrete changes to shared artifacts
by consulting numerous sources of information including
source code, email, and bug reports [15]. Developers are
known to maintain awareness of their projects regardless of
whether they are in a co-located or distributed work envi-
ronment [10].

A lack of awareness can contribute to delays and soft-
ware quality issues [12, 2], and in response, researchers
have proposed numerous tools designed to promote aware-
ness in software teams. Many of these tools have a
dashboard-like interface that conveys high-level project sta-
tus through aggregate statistics of developer activity [8, 7].
Although dashboards can provide useful information [22]—
especially to developers performing managerial tasks—few
awareness tools are optimized to convey information about
discrete project events. Consequently, there is little under-
standing about how awareness of these events can support

collaboration. A discrete event is an atomic, individually
distinct modification by a single developer to an artifact or
group of artifacts in a software project. Examples of com-
mon discrete events include a change in the status of a bug
report, an automated build failure, or a source code commit
that might affect multiple files (e.g., a changeset).

We developed a tool called Aufait that integrates event
streams from multiple sources including source code
repositories, bug tracking systems, team communication
archives, automated build systems, and document reposi-
tories. It provides a visual timeline of discrete events and
allows developers to obtain detailed information about peer
activities and changes to shared artifacts.

We deployed Aufait in two different software develop-
ment organizations and conducted an empirical study of
how developers use discrete event streams to support col-
laboration within their teams. Our study involved a total
of nine participants and we collected both quantitative and
qualitative data over a period of three weeks by recording
user interface actions and conducting regular, structured in-
terviews. We found that developers used event streams in
Aufait to support mechanics of collaboration that are well
defined in a framework for groupware evaluation [9]. They
primarily used the information provided by Aufait to mon-
itor the state of the shared project workspace. They also
coordinated actions, planned future work, communicated
amongst themselves, and performed related tasks after be-
coming aware of events in Aufait. Developers were dis-
proportionately interested in source code events and events
that occurred within the past day. Our findings have con-
crete design implications for future tools and demonstrate
that discrete event streams can play a useful role in support-
ing awareness and collaboration among software develop-
ers.

2. Background

The study of awareness and collaboration in software de-
velopment has many of its roots in the field of computer-

supported cooperative work, where it is widely accepted
that awareness of peer activities is central to successful col-
laboration. Awareness provides essential context to an in-
dividual’s contributions in a shared workspace to ensure
that such contributions are relevant to and consistent with
a group’s overall activity [5].

Shared artifacts also play a crucial role in awareness.
Participants in a collaborative process exert control over
shared artifacts and receive feedback about their state as
others modify them. Shared artifacts therefore provide a
medium of indirect communication in a collaborative pro-
cess: when one participant acts upon a shared artifact,
others observe the effects of the action and thus are able
to communicate through the artifact. This type of indi-
rect communication is called feedthrough [4] or consequen-
tial communication [9]. In software development, discrete
events such as individual source code commits combine
information about peer activities and the state of shared
artifacts as they contain information about the developer
who initiated the change as well as the shared artifacts that
he/she modified. In this sense, streams of discrete events
represent a medium of indirect, feedthrough communica-
tion between developers.

2.1. Awareness in Software Teams

Multiple case studies in diverse settings confirm that
software developers explicitly seek out awareness infor-
mation during their work. In an observational study of
co-located software teams, Ko et al. found that recent co-
worker activity and recent artifact changes were among the
most common information needs for developers [15]. They
also identified specific sources of awareness information:
bug reports, email, source code, developer tools, and direct
communication with co-workers. Gutwin et al. found that
geographically-distributed developers also maintain aware-
ness, especially using project mailing lists [10]. Further,
awareness information seems to play a role in coordinating
dependencies and changes between team members [3].

Cases describing software project dysfunction when
there is a lack of awareness among team members are plen-
tiful. Damian et al. found that a lack of awareness con-
tributed to consequences such as broken integration builds
[2]. Moreover, Herbsleb and Grinter found that a lack of
awareness in modular software development contributed to
unnecessarily delayed integration periods [12].

2.2. Related Work

Researchers have proposed numerous tools to promote
awareness in software development teams [21]. These tools
typically exhibit a graphical dashboard interface that pro-
vides a high-level overview of project activity. The ma-

jority of tools focus solely on awareness as it pertains to
source code, although some support awareness of changes
to multiple artifact types. Augur provides a line-oriented
view of source code changes showing relationships be-
tween software structure and activity [7]. CodeSaw offers
an aggregate, retrospective view of source code commits
and email communications [8]. Jazz provides configurable
dashboards of team activity with information such as open
work items [22]. Other tools are optimized for monitoring
shared workspace activity in real time [1, 17] and for view-
ing open work items [13].

Few of these tools, however, are optimized to convey in-
formation about discrete events as in Aufait. Although Jazz
supports feeds of automated build and work item events,
how developers use feeds to support collaboration in Jazz
has not been studied. Fitzpatrick et al. developed a simple
discrete event awareness tool for source code commits [6],
although their study examined only a handful of develop-
ers’ interactions with the tool and they did not evaluate how
the tool supports specific mechanics of collaboration.

3. Discrete Event Streams in Aufait

The default view in Aufait provides a visual representa-
tion of event streams that is partially inspired by the Simile
Timeline [20]. As shown in Figure 1, discrete events are
displayed in horizontal timelines that are stacked vertically.
Events for different artifact types are displayed in differ-
ent timelines. Each circle on a timeline represents an event
and Aufait displays a short textual label beside each circle.
For example, a source code commit event is labeled with
a short summary of the comment that the author provided
when checking in the code. Detailed information about an
event, including how the artifact was modified, is available
by clicking on the event in the timeline. Team members
are displayed to the right of the timeline and each event is
annotated with a color to encode the author of the event.
Users can filter the timelines by selecting a team member,
dragging to select events, and by keyword search.

In addition to the visual timeline, Aufait includes a more
content-oriented view that is accessible by clicking on the
‘Details’ tab. The details view is similar in design to an
email client or news reader in that it displays events in a list
and details of a selected event are displayed in a panel.

Aufait can display events within any custom time inter-
val. Users can view events within the last day or within the
last week by using shortcut buttons. By default, the inter-
face shows events within the last day.

4. Study Methods and Design

We deployed Aufait at two separate software develop-
ment organizations and conducted an empirical field study

Figure 1. The default timeline view in Aufait.

of how developers used it to support collaboration within
their teams over a three-week period. We intentionally se-
lected one organization with a co-located team and one or-
ganization with a geographically-distributed team to gain a
broad understanding of how developers use discrete event
streams across different environments. In both organiza-
tions, we instructed developers to use Aufait as much or as
little as they found to be useful over the study period.

4.1. Case Study Venues

Zerofootprint [23] develops environmental impact man-
agement software for individuals and organizations. We so-
licited the five developers in software development roles at
Zerofootprint and four agreed to take part in our study. The
participants had an average of nine years of experience in
professional software development and had been working
together for less than one year. All four worked in a co-
located setting and we gave them a live demo of Aufait be-
fore the study began. We integrated Aufait with Zerofoot-
print’s internal systems and collected events for source code
modifications, automated builds, bug reports, and project
documents in a wiki.

Cytoscape [19] is a geographically-distributed, open
source project that develops software for visualizing and an-
alyzing complex networks, especially biological networks.

Many developers from around the world contribute to the
Cytoscape project and we solicited the ten most recently
active—based on source code contributions—to participate
in our study. Of those ten, seven agreed to take part; how-
ever, we only included the five developers who actively con-
tributed code over the study period. The participants had an
average of fifteen years of experience in software develop-
ment and most had been working together for over three
years. We provided them with a demo video describing the
features of Aufait along with a brief user manual before the
study began. In addition to the artifact types we supported
at Zerofootprint, we collected email events from the Cy-
toscape project mailing list and displayed them in Aufait.

4.2. Data Collection

We instrumented Aufait to record all user interface activ-
ities in a usage log over the study period. On a weekly basis,
we reviewed the usage log and segregated it into a series of
interactions for each participant. We defined an interaction
as a sequence of clicks in the user interface with less than
two minutes of idle time between them. We were specif-
ically interested in interactions where developers viewed
specific discrete events or where they employed features of
Aufait such as event filtering. We purposively sampled the
usage log for such interactions and asked developers a se-

ries of structured questions about them via email each week.
Herein, we refer to these samples as interaction samples.

We used the weekly email interviews to explore the de-
tailed collaborative context behind the interactions: specifi-
cally, what motivated the developer to view certain events in
the interface, what information did he/she take note of, and
what actions (if any) did he/she take as a result of that infor-
mation? We limited the email questions to a maximum of
five per week to avoid placing an excessive time burden on
participants. We used cues such as the time the interaction
occurred, the textual content for events that participants se-
lected, and links to artifacts in order to trigger participants’
memories of the context. The following is an excerpt of an
email to a Zerofootprint developer (Z1) with the response
that we received in-line:

JH: You accessed Aufait on Wednesday around
10am and looked at a code revision from Z2
(check-in message: “partial implementation of
[feature]”). You then looked at the associated
build event and followed its link to the build sum-
mary webpage [link]. Why did you select these
specific events?

Z1: I was reviewing possible check-ins to deter-
mine if Z2 had completed a commit. I’m not sure
why I looked at the builds.

JH: Did you take any action as a result of the in-
formation you saw?

Z1: Started coding on the component that Z2
committed.

In addition to the weekly email questions, participants
had the option to report the context behind an interaction
through an open-ended form directly in the user interface.
To motivate participants to provide rich information in their
emails and self-submitted reports, we offered $50 gift cer-
tificates to the two participants in each organization who
provided the most detailed context throughout the study.

We also conducted short, semi-structured interviews
with participants at the end of the study to gain a better un-
derstanding of participants’ background, their work context,
and to gather feedback on Aufait’s design. During the inter-
views, we verbally administered a short survey to evaluate
features of Aufait and its overall usability1.

4.3. Categorizing Interactions

We grounded our analysis of the interaction samples in
a conceptual framework for groupware evaluation proposed
by Gutwin and Greenberg [9]. The framework is based on

1The complete survey results are available as an appendix at
http://aperte.org/papers/aufait-survey.pdf

well-established mechanics of collaboration that have been
observed in empirical studies and reported in previous liter-
ature. It has been widely cited and successfully applied in
previous research [14]. According to the framework, col-
laborative work involves both taskwork and teamwork ac-
tivities. Taskwork is the actual execution of a task while
teamwork is “the work of working together.” Teamwork is
defined by specific mechanics of collaboration that groups
perform collectively in order to carry out their work: moni-
toring the shared project workspace, communicating, coor-
dinating actions, planning, protecting one’s work from the
actions of others, and providing assistance to others.

We used the mechanics of collaboration in Gutwin
and Greenberg’s framework to define a preformed coding
scheme for categorizing each interaction sample based on
its reported context. We categorized the email interview re-
sponse or self-submitted report for each interaction sample
using the constant comparison method [18] and the codes
summarized in Figure 2. In some cases, we assigned multi-
ple codes to an interaction where a participant viewed mul-
tiple events or had different motives for viewing events in a
single interaction.

We made slight adjustments to our preformed coding
scheme as we analyzed the data. We augmented the ‘mon-
itoring’ mechanic with additional classes as we observed
distinct variations in why developers monitored certain
events. We omitted the ‘assistance’ mechanic from our cod-
ing scheme as we did not observe it in our data.

5. Results

Out of the 63 total interactions in the Zerofootprint us-
age log, we sampled 31 through weekly email interviews
and self-submitted reports. We categorized six as ‘Other’,
leaving 25 interactions for analysis. We sampled 37 of the
84 total interactions in the Cytoscape usage log. We did not
receive a response from a participant for five interactions
and an additional five fell into the ‘Other’ category, leaving
27 Cytoscape interactions for analysis.

5.1. Supporting Collaboration

We found that developers in our study used Aufait to
support a number of collaborative mechanics defined by
Gutwin and Greenberg’s framework. As shown in Figure 3,
our interaction categorizations demonstrate that developers
in both organizations predominantly used Aufait to monitor
their shared project workspaces. We discuss each collabo-
rative mechanic that we observed in the interaction samples
and present concrete examples of each mechanic below.

MONITORING. Participants had four distinct motives
for monitoring events in our interaction samples: explo-
ration, monitoring peer activity, monitoring the status of

Category Class Description

Monitoring Exploration Monitoring events with no
concrete motive

Peer
Activity

Monitoring activities of
peers

Artifact
Status

Monitoring status of
specific artifacts

Impact Monitoring events that
impact oneʼs work

Communication n/a Explicit communication
between team members

Coordination n/a Coordinating actions
between team members

Planning n/a Planning future actions

Protection n/a Protecting oneʼs work from
actions of others

Taskwork n/a Executing task after
viewing event

Other No
Response

Participant did not respond
to email

Unknown Participant could not recall
context

Testing Participant was testing
Aufait

Figure 2. Collaboration categories and
classes used in coding interaction samples.

specific artifacts, and monitoring events that impact their
work.

Developers in both organizations used Aufait to moni-
tor and explore events in their shared workspaces without a
concrete motive. Participants frequently viewed events sim-
ply because they were curious about what had happened.
For instance, a Cytoscape developer viewed a document
event because he was curious about what a colleague added
to the wiki.

When monitoring peer activity, developers most com-
monly used Aufait to determine the activities of other de-
velopers that they did not have direct contact with. For ex-
ample, Zerofootprint developers used Aufait to get updates
on the activities of a contractor who worked off-site as well
as for a team member who was only transiently involved in
their project. Similarly, Cytoscape developers used Aufait
to monitor the activities of remote developers. In both or-
ganizations, we found that participants in a leadership role
used Aufait to monitor the activities of their subordinates.

Participants at Zerofootprint often used Aufait to moni-
tor the status of artifacts that needed to be in a specific state
before a task could be executed. For example, developer
Z1 was interested in whether Z2 had checked in code that
he depended on for developing a new feature. Further, Ze-
rofootprint developers used Aufait to inquire about why an
artifact was in a specific state, for example to determine the
cause of an automated build failure. Cytoscape developers
also used Aufait to monitor the status of artifacts. After be-
coming aware of a change to source code in Aufait, C1 and
C2 reviewed the corresponding source code diffs to deter-
mine how the artifact state had changed.

Cytoscape developers used Aufait to monitor events in
the shared workspace that impact their own work. For in-
stance, C2 was working on a separate source code branch
and used Aufait to determine how changes to code on the
trunk impacted his work. Other developers examined the
details of specific events when they determined that the
event might impact their own work after examining the tex-
tual summary in the timeline.

COMMUNICATION. Viewing an event in Aufait trig-
gered explicit communication actions among Zerofootprint
developers on multiple occasions. In three of these in-
stances, the nature of the communication was to orient a
developer to the information that he/she viewed. For ex-
ample, Z2 viewed a bug report update in Aufait because it
contained requirements for a feature that he was assigned to
implement. He then asked Z3 and Z4 to clarify the informa-
tion in the bug report. In two other instances, Zerofootprint
developers communicated about a build failure after notic-
ing the status of the build in Aufait.

COORDINATION. In both organizations, developers
coordinated actions amongst themselves after becoming
aware of an event in Aufait. For instance, Zerofootprint
participant Z2 noticed that a recent source code check-in
from Z3 was a fix for a bug he had just reported. Z2 then
resolved the bug as being fixed by Z3. Zerofootprint devel-
opers also coordinated actions to fix build failures after be-
coming aware of them in Aufait. Cytoscape developers C2
and C4 coordinated their pending source code changes with
source code events from their peers after becoming aware
of them in Aufait.

PLANNING. Participants in both organizations used the
information provided by events in Aufait to plan future
work. After becoming aware of a wiki modification in Au-
fait, Z2 used information in the wiki to plan the implementa-
tion of an upcoming feature. Cytoscape participant C5 used
information contained in a wiki modification to prepare for
an upcoming meeting. Similarly, C3 used information in
a wiki modification to plan action items following a group
retreat.

PROTECTION. Cytoscape developers sometimes took
action to protect changes in their own workspace from in-

exploration

peer activity

artifact status

impact

communication

coordination

planning

protection

taskwork

0 2 4 6 8 10

Zerofootprint Cytoscape

m
on

it
or
in
g

Figure 3. Counts of interaction samples by
collaboration code.

coming changes in the shared workspace. C2 was work-
ing on a branch, and after becoming aware of source code
changes on the trunk using Aufait, he merged those source
code changes into his branch to ensure they were compati-
ble.

TASKWORK. On multiple occasions, developers in both
organizations performed related taskwork after becoming
aware of an event in Aufait. Zerofootprint developers took
corrective action to fix a broken build and Cytoscape devel-
opers added new content to shared documents after becom-
ing aware of changes to those documents in Aufait.

5.2. Properties of Events Viewed

We observed two distinct patterns in the events that de-
velopers viewed over the study period. Developers were
overwhelmingly interested in very recent events versus
older events, and furthermore, they viewed some event
streams more often than others.

As previously described, users can click on events in Au-
fait to view details about how artifacts changed and who
initiated the change. Although Aufait allows developers to
select any historical time interval, we found they primarily
viewed events that occurred within the past day, as shown in
Figure 4. In fact, only a single Cytoscape developer viewed
events older than one week and he did so only during the
first few days of the study. Excluding the outlying events
that were older than one week, the median age of events
viewed among Cytoscape participants was 18 hours and
75% of events viewed were less than 36 hours old. Among
Zerofootprint participants, the median age of events viewed
was 10 hours and 75% of events viewed were less than 24

0

25

50

75

100

125

< 24 hours old < 7 days old > 7 days old

Zerofootprint Cytoscape

Figure 4. Counts of events viewed in Aufait
by age of the event.

hours old.
According to our usage log, developers disproportion-

ately viewed event streams for different types of artifacts. In
both organizations, they clicked on and viewed source code
events more often than others. Further, developers viewed a
disproportionately high number of source code events rela-
tive to the total number of such events over the study period.
At both organizations, source code events made up only one
quarter of all events, however they made up approximately
one half of all events that developers clicked on in Aufait. In
a chi-square goodness of fit test, we found that the distribu-
tion of events viewed across artifact types in our study was
significantly different from a uniform distribution of events
viewed across all artifact types (p < 0.01 for both orga-
nizations). In other words, participants were not equally
likely to view a document change event, for example, over
a source code event.

6. Discussion

The key finding of our study is that discrete event streams
as in Aufait support collaborative activities and mechanics
of collaboration that are well established in previous re-
search. Our findings also imply that the design of future
tools could be enhanced by supporting the mechanics of
collaboration that we found to be dominant in our study.
We discuss these implications and provide concrete design
recommendations below.

6.1. Monitoring Artifact Changes

In both organizations that we studied, developers fre-
quently monitored changes to artifacts in the shared project

workspace, for example to manage dependencies or to find
events that might impact them. The frequency of this sce-
nario is consistent with the findings of Ko et al. [15], who
identified that the status of dependent artifacts was a com-
mon information need among developers. In order to satisfy
this information need, we believe awareness tools should
provide detailed descriptions of how an artifact has changed
and emphasize events that are likely to impact a developer.
For example, tools could highlight source code events af-
fecting files that the developer has recently worked on. Fur-
ther, to better inform developers about changes to depen-
dent source code, tools should provide source code diffs.
Multiple developers in our study suggested adding a code
diff viewer to Aufait and all participants rated this proposed
feature as being valuable or very valuable in our post-study
survey. Tools should also provide a link so that develop-
ers can easily view modified artifacts, as participants in our
study regularly used this feature of Aufait and rated it to be
very valuable in our post-study survey.

Previous awareness tools such as Augur [7] focus solely
on source code artifacts, and while developers were most
interested in source code events in our study, they also mon-
itored other types of artifacts. They monitored builds, doc-
uments, bug reports, and project emails when using Aufait,
which suggests that future tools should incorporate more
than just source code artifacts in their interfaces.

Some of the previously-proposed awareness tools were
designed to support a retrospective, historical view of arti-
fact changes. Specifically, CodeSaw [8] and Augur support
exploration of artifact changes over long periods of time.
As previously discussed, developers in our study most often
viewed information about events that occurred within the
last day and almost never viewed information about events
older than one week. Although there may be isolated in-
stances where developers seek information about historical
events, our results suggest that future tools should be opti-
mized to display recent events.

6.2. Monitoring Peer Activities

In addition to seeking information about artifacts, devel-
opers in both organizations frequently sought information
about peer activity in Aufait. This usage scenario is also
consistent with the study by Ko et al. [15], where the most
common information need among a group of developers
was peer activity information. This need suggests that an-
notating events with authorship information is an important
feature in promoting awareness: such annotations connect
an artifact modification to an individual. As previously de-
scribed, Aufait colors each event on its timeline according
to authorship and displays a photo of the author in the de-
tailed content for an event. The results of our study suggest
that this is an essential feature for future tools.

6.3. Supporting Communication

As previously discussed, we found multiple instances
where Zerofootprint developers initiated communication
with peers as a result of viewing information in Aufait.
Biehl et al.’s study of FASTDash found that communica-
tion in a team increased significantly after the tool’s deploy-
ment [1], suggesting that it may facilitate communication.
The results of our study similarly suggest that discrete event
streams may facilitate communication between team mem-
bers.

Interestingly, we did not find any instances of explicit
communication actions among Cytoscape developers using
Aufait. Previous research on coordination in software teams
has shown that developers often communicate informally
during their work [16], but it is well known that there are
barriers to informal communications between developers in
distributed teams [11]. If tools could facilitate a developer
to initiate informal communication at the time he/she be-
comes aware of an artifact modification, perhaps such com-
munication would increase in distributed teams. For ex-
ample, Aufait could display presence information for team
members to facilitate instant messaging conversations about
events.

7. Study Limitations

We studied how developers used Aufait within the con-
text of real-world software development projects, thus we
believe that our findings have high external validity. Also,
we studied developers using Aufait in two very different or-
ganizations, which enhances the generalizability of our re-
sults to diverse software development settings.

Although we did not empirically evaluate Aufait’s us-
ability before deploying it at the organizations in our study,
usability did not appear to be a major factor. Our survey
results suggest that the lesser-used filtering features in Au-
fait may not have been easily discoverable, however these
issues do not affect our major findings. Overall, our survey
found that developers had no difficulty in using Aufait.

In analyzing the qualitative data from our interaction
samples, a single researcher coded the interactions. Ideally,
multiple researchers should code qualitative data to ensure
accurate categorization. Even so, we feel that the relative
magnitude of each categorization is correct.

8. Conclusions

Our goal in this study was to define how discrete event
streams in Aufait can support collaboration in software de-
velopment teams. We found that developers in our study
used Aufait to support collaborative activities that are well

established in previous research: monitoring the shared
workspace, communicating, coordinating work, planning,
protecting work, and performing taskwork. We also found
patterns in how developers used Aufait that have important
implications for the design of future tools. Specifically,
tools should be optimized to display very recent events as
well as to monitor the shared project workspace. Most
importantly, our results demonstrate that discrete event
streams are a promising way to support collaboration in
software teams.

9. Acknowledgements

We thank the software developers and organizations that
participated in our study. We also thank Jorge Aranda and
Gina Venolia for helpful conversations throughout the in-
vestigation. The first author was a graduate student at Uni-
versity of Toronto while conducting this research.

References

[1] J. T. Biehl, M. Czerwinski, G. Smith, and G. G. Robert-
son. FASTDash: a visual dashboard for fostering awareness
in software teams. In CHI ’07: Proc. of the Conf. on Hu-
man Factors in Computing Systems, pages 1313–1322, New
York, NY, USA, 2007. ACM.

[2] D. Damian, L. Izquierdo, J. Singer, and I. Kwan. Aware-
ness in the wild: Why communication breakdowns occur.
In ICGSE ’07: Proc. of the Intl. Conf. on Global Software
Engineering, pages 81–90, Washington, DC, USA, 2007.
IEEE.

[3] C. R. B. de Souza, D. Redmiles, L.-T. Cheng, D. Millen, and
J. Patterson. Sometimes you need to see through walls: a
field study of application programming interfaces. In CSCW
’04: Proc. of the Conf. on Computer Supported Cooperative
Work, pages 63–71, New York, NY, USA, 2004. ACM.

[4] A. Dix. Computer supported cooperative work - a frame-
work. In D. Rosenburg and C. Hutchison, editors, Design
Issues in CSCW, pages 23–37. Springer Verlag, 1994.

[5] P. Dourish and V. Bellotti. Awareness and coordination
in shared workspaces. In CSCW ’92: Proc. of the Conf.
on Computer Supported Cooperative Work, pages 107–114,
New York, NY, USA, 1992. ACM.

[6] G. Fitzpatrick, P. Marshall, and A. Phillips. Cvs integration
with notification and chat: lightweight software team col-
laboration. In CSCW ’06: Proc. of the Conf. on Computer
Supported Cooperative Work, pages 49–58, New York, NY,
USA, 2006. ACM.

[7] J. Froehlich and P. Dourish. Unifying artifacts and activities
in a visual tool for distributed software development teams.
In ICSE ’04: Proc. of the Intl. Conf. on Software Engineer-
ing, pages 387–396, Washington, DC, USA, 2004. IEEE.

[8] E. Gilbert and K. Karahalios. CodeSaw: A social visualiza-
tion of distributed software development. Human-Computer
Interaction INTERACT 2007, pages 303–316, 2007.

[9] C. Gutwin and S. Greenberg. The mechanics of collabo-
ration: Developing low cost usability evaluation methods
for shared workspaces. In WETICE ’00: Proc. of the Intl.
Workshops on Enabling Technologies, pages 98–103, Wash-
ington, DC, USA, 2000. IEEE.

[10] C. Gutwin, R. Penner, and K. Schneider. Group awareness
in distributed software development. In CSCW ’04: Proc. of
the Conf. on Computer Supported Cooperative Work, pages
72–81, New York, NY, USA, 2004. ACM.

[11] J. Herbsleb and R. Grinter. Splitting the organization and
integrating the code: Conway’s law revisited. In ICSE ’99:
Proc. of the Intl. Conf. on Software Engineering, pages 85–
95, New York, NY, USA, May 1999. ACM.

[12] J. D. Herbsleb and R. E. Grinter. Architectures, coordina-
tion, and distance: Conway’s law and beyond. IEEE Soft-
ware, 16(5):63–70, 1999.

[13] M. Jakobsen, R. Fernandez, M. Czerwinski, K. Inkpen,
O. Kulyk, and G. Robertson. Wipdash: Work item and
people dashboard for software development teams. Human-
Computer Interaction INTERACT 2009, pages 791–804,
2009.

[14] H. Johnson and J. Hyde. Towards modeling individual and
collaborative construction of jigsaws using task knowledge
structures (tks). ACM Transactions on Computer-Human In-
teraction, 10(4):339–387, 2003.

[15] A. J. Ko, R. DeLine, and G. Venolia. Information needs in
collocated software development teams. In ICSE ’07: Proc.
of the Intl. Conf. on Software Engineering, pages 344–353,
Washington, DC, USA, 2007. IEEE.

[16] D. Perry, N. Staudenmayer, and L. Votta. People, organiza-
tions, and process improvement. IEEE Software, 11(4):36–
45, July 1994.

[17] A. Sarma, Z. Noroozi, and A. van der Hoek. Palantı́r: raising
awareness among configuration management workspaces.
In ICSE ’03: Proc. of the Intl. Conf. on Software Engineer-
ing, pages 444–454, Washington, DC, USA, 2003. IEEE.

[18] C. B. Seaman. Qualitative methods. In F. Shull, J. Singer,
and D. I. Sjoberg, editors, Guide to Advanced Empiri-
cal Software Engineering, pages 35–62. Springer, London,
2008.

[19] P. Shannon, A. Markiel, O. Ozier, N. S. Baliga, J. T. Wang,
D. Ramage, N. Amin, B. Schwikowski, and T. Ideker.
Cytoscape: a software environment for integrated models
of biomolecular interaction networks. Genome Research,
13(11):2498–2504, Nov. 2003.

[20] Simile timeline, 2010. http://www.simile-
widgets.org/timeline.

[21] M.-A. D. Storey, D. Čubranić, and D. M. German. On the
use of visualization to support awareness of human activities
in software development: a survey and a framework. In Soft-
Vis ’05: Proc. of the Symposium on Software Visualization,
pages 193–202, New York, NY, USA, 2005. ACM.

[22] C. Treude and M.-A. Storey. Awareness 2.0: Staying
aware of projects, developers and tasks using dashboards
and feeds. In ICSE ’10: Proc. of the Intl. Conf. on Software
Engineering (to appear). ACM, 2010.

[23] Zerofootprint software, 2010. http://www.zerofootprint.net.

